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Abstract – In the present study, the eigenmodes of a cylindrical chamber without and with coupling to an 
absorber cavity are taken under examination. The spectrum of eigenmodes is determined and the damping of 
modes is characterized by the line-width of the resonances. It is found that usually damping for a given 
acoustical eigenmode is connected to an increase of the intensity of another one. For the acoustically coupled 
system of a cylindrical resonator and an absorber cavity it is shown that the eigenfrequencies and other prop-
erties of the acoustical eigenmodes deviate from those of the uncoupled cylindrical resonator. The damping 
is investigated as a function of resonator length and the optimal length for efficient damping is discussed. 
The damping can be increased by the application of capillary volume at the rear end of the absorber.  
 
1 – Theoretical background 
 
In rocket engines, undesirable oscillation of combustion is usually caused by tangential modes. At the Insti-
tute of Space Propulsion, in DLR Lampoldshausen acoustical experiments are carried out using common 
research chambers for both, hot fire [1] and cold flow tests. The experiments presented in this work do not 
involve combustion or injection; rather they use a model combustion chamber filled with air at room tem-
perature to allow easier and more fundamental characterization of the acoustic processes at work, 
 
In the present study, the abbreviation for the axial, radial and tangential modes is L, R and T, respectively. 
The number before the abbreviation enables the mode identification. Exemplarily, 1L means the axial or 
length basic tone, 2L the first axial harmonic, 3L the second axial harmonic, and so on. 
 
The oscillation frequency for the length mode of a half wave tube (a tube with two open or two closed ends) 
can be predicted as 
 

L
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with f (Hz) as the frequency, c (m/s) as the speed of the sound, L (m) as the tube length and l as the mode 
number. The frequency of the resonance in axial direction in a quarter wave tube (a tube with one open and 
one closed end) is 
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The frequency of transverse modes in cylindrical chamber can be calculated as 
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 (m = 1, 2, 3… and n = 0, 1, 2…)      (3) 
 
with αn,m as the eigenvalues of the Bessel function, m-1 and n being the mode numbers of radial and tangen-
tial oscillation. The radius of the chamber is r. The axial-transverse-combination-frequency is  
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with l, m, n as the order of the L, R and T modes. 
 
The spectral energy density or intensity of the different modes can be predicted from the definition of the 
unit decibel as 
 
dB = 10·log(I1/I2)           (5) 
 
with I1 and I2 as the spectral energy density of the oscillation of the eigenmodes 1 and 2. 
 
 
2 – The experimental procedure  
 
The experimental rig is exhibited in figure 1. The dimensions of the cylindrical chambers and resonators are 
shown in table 1. 
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FIGURE 1: Sketch of the experimental device 
 
 

Chamber Cavity Chamber 
No. Diameter  D Length  L Number Diameter  d Length  l 
1 200 42 1 12.3 and 10 0  to 180 
2 220 44 42 9 0  to   90 

 
TABLE 1: Dimensions of the experimental device 

 
While exciting the cylindrical chamber, the microphone voltage signal shows the pressure oscillation. The 
fast Fourier transform (FFT) analysis of the microphone signal exhibits the frequency distribution. The 
chamber is excited by a loudspeaker. For excitation a Visaton K 50 WP 50 Ohm full range speaker was used 
with a frequency response of 180 – 17000 Hz and a response frequency of 300 Hz. The sound signal is 
measured by a Microtech Gefell measuring microphone MV 302. For acoustical analysis the common soft-
ware HobbyBox® 5.1 has been used. The single sinusoidal signal was generated by the function generator 
Yokogawa FG 220, the MLS signal, a kind of repeatable white noise sequence, by HobbyBox® itself.  
 
The identification of the modes is carried out by comparison of the frequency distribution of the measured 
signal to the predicted mode frequencies. Table 2 shows the mode identification for the experiments with 
chamber No. 2 for c = 345 m/s. 

 2



 
No. 

 
n 

 
m 

 
αnm

 
Mode 

Calculated 
frequency 

(Hz) 

Measured 
frequency  

(Hz) 

Relative 
energy density 
Imax = 100% 

Intensity dis-
tribution 
Σ =100 % 

1 1 1 1.8410 1T 919 930 100 41.6 
2 2 1 3.0541 2T 1525 1530 50 20.8 
3 0 2 3.8318 1R 1913 1910 20 8.3 
4 3 1 4.2013 3T 2097 2100 40 16.6 
5 4 1 5.3175 4T 2654 2660 16 6.7 
6 1 2 5.3320 1R1T 2661 2670 4.5 1.7 
7 5 1 6.4160 5T 3203 3210 5 2.1 
8 2 2 6.7085 1R2T 3349 3350 2.5 0.9 
9 0 3 7.0155 2R 3502 3500 0.25 <0.1 
10 6 1 7.5018 6T 3745 3740 0.3 0.1 
11 - - - 1L 3920 3910 0.1 <0.1 
- 3 2 8.0146 1R3T 4001 not found - - 
12 - - - 1L1T 4026 4010 1.6 0.4 
13 - - - 1L2T 4206 4200 1.3 0.25 
- 1 3 8.5363 2R1T 4261 very weak - - 
- 7 1 8.5781 7T 4282 not found - - 
- - - - 1L1R 4362 very weak - - 
14 - - - 1L3T 4446 4430 1.3 0.25 
15 4 2 9.2825 1R4T 4634 4620 <0.1 <0.1 
16   - 1L4T 4734 4720 <0.1 <0.1 
17 8 1 9.6475 8T 4816 4820 <0.1 <0.1 

TABLE 2: Acoustical modes presented in figure 3; speed of sound c = 345m/s 
 
The measuring procedure contains two steps: 1) The chamber is acoustically excited by a white noise. This 
step permits to determine at least the first 20 acoustical modes. However, the signal quality of this method is 
weak and the result is useable for frequency determination only. 2) The acoustical mode in question is ex-
cited a second time by its eigenfrequency. This step results in a high quality signal which enables the deter-
mination of all acoustical quantities. The duration of the single sinus signal was 50 ms, the output level was 
2V. Figure 2 demonstrates the raw signal of the first tangential mode excited by its eigenfrequency. Origin of 
the FFT analysis is the sudden interruption of the excitation signal. 
 
 

 

16 bit sampling at 96 kHz  
fexcitation = f1T = 930 Hz 
Excitation time: 50 ms 

Excitation Decay

FFT time period

FIGURE 2: Signal of excitation and decay of the 1T mode 
Chamber No. 2; cylindrical chamber without cavity 
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3 – Hierarchy of acoustical modes in a cylindrical chamber 
 
Acoustical modes can be excited by different acoustical signals, among others by white noise or by a single 
sinusoidal signal. The sinus signal may have the eigenfrequency of the mode to be excited, but it can also be 
a signal having a different frequency. According to linear acoustics there is no energy exchange between 
different acoustical modes. Our results show, however, that linear acoustic theory cannot explain all features 
we have found in our experiments. We observe energy transfer between modes, a phenomenon, which is 
beyond linear theory. The goal of the following experiments is the determination of the eigenfrequencies of 
the combustor coupled with quarter wave tubes and to investigate the mode conversion process. 
 
The experiment presented in figure 3 shows the FFT-result of the pressure oscillation in the frequency range 
of 800 to 5000 Hz using white noise excitation. In this frequency range different basic tints, as the first tan-
gential, the first radial and the first axial modes, can be seen including their overtones. Table 2 contains the 
first 21 tones being presented in figure 3. In table 2 are, however, only 17 tones numbered, since four over-
tones indicate only very weak signal. The 1T mode (mode No. 1 in table 2) has the highest intensity among 
all acoustical modes, followed by the second (No. 2) and the third tangential ones (No. 4) which show an 
intensity of about 50 and 40 % of the 1T mode, respectively. The first three tangential modes are followed by 
the 1R (No. 3) and 4T (No. 5) modes having a relative intensity of 20 and 16 % compared to the 1T mode, 
respectively. The sixth place in the ranking possesses the 5T mode (No. 7) with a relative amplitude of about  
5 % followed by the 1R1T (No. 6) and 1R2T (No. 8) combination modes with a relative intensity of about 4 
and 2.5 %, respectively.  The energy density of the 1L1T (No. 12), 1L2T (No. 13) and 1L3T (No. 14) modes 
is just above the 1% level of the 1T mode. The term “pedestal intensity” is explained in figure 3. The Full 
Width of Half Maximum (FWHM, see figure 4) of a mode is overestimated for pedestal intensities below  
10 dB and strongly overestimated for values below 5 dB.  
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FIGURE 3: Frequency distribution at white noise excitation 
 

Figures 2 – 9 present experiments with chamber No. 2 without cavity. The mode identification numbers on 
these figures refer to table 2. 
 
Figures 4 to 6 show the frequency distribution for excitation of different eigenmodes by their eigenfrequen-
cies. As can be seen, the relative energy density of the excited modes decreases with increasing excitation 
frequency. Figure 4 presents the frequency distribution of the 1T mode excited by its eigenfrequency. As can 
be observed, the intensity of the 1T mode is over 35 dB higher than that of the following 2T mode. This 
means that the intensity of the 2T mode (No. 2) is less than 0.03 % of the 1T mode’s intensity. Figure 5 pre-
sents the frequency distribution for the 5T mode excitation (No. 7). The experiment in figure 6 shows the 
frequency distribution of the 8T mode excitation (No. 17). The difference intensity, as shown in figure 5, 
enables to predict the relative energy density of a mode using equation (5). The energy density then is the 
basis for the calculation of the intensity distribution as presented in table 2.   
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FIGURE 4: Frequency distribution at excitation with 1T eigenfrequency (No. 1, 930 Hz) 
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FIGURE 5: Frequency distribution at excitation with 5T eigenfrequency (No. 7, 3210 Hz) 
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FIGURE 6: Frequency distribution at excitation with 8T eigenfrequency (No. 17, 4820 Hz) 
 
Looking to figure 6 it can be seen that the excitation of the 8T mode (No. 17) by its eigenfrequency excites 
all lower eigenmodes. The excitation of the lower order modes in figure 6 is even of higher quality than the 
white noise excitation presented in figure 3. Thus, the energy of the 8T eigenmode converts into all other 
lower order acoustical eigenmodes.  
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FIGURE 7: Microphone voltage of the acoustical modes excited by their eigenfrequencies 
 
Figure 7 demonstrates that the microphone voltage decreases with increasing excitation frequency. This ex-
perimental finding can be explained by the fact that the high frequency excitation energizes many modes 
rather than excitation at lower frequencies. Since the oscillation of the multiplicity of the excited modes is 
not synchronized, the pressure peak is lower than that of an excitation by lower frequencies. 
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FIGURE 8: Intensity of the acoustical modes excited by their eigenfrequencies 

 
 
Figure 8 presents the decrease of the intensity of the excited modes with increasing excitation frequency, 
while 100 % is the sum of all intensities. This experimental result is an evidence of the energy conversion 
from higher order into lower order modes.  
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FIGURE 9: Intensity of the 1T, 2T, 1R and 3T modes while exciting other modes 
 
Figure 9 exposes very strong evidence for the mode to mode conversion and for the hierarchy of acoustical 
modes. The intensity of the 1T, 2T, 1R and 3T modes is plotted VERSUS the excitation frequency. The plot-
ted modes are not excited by their eigenfrequencies but by the frequency of other modes. It can be observed 
that the intensity of the non-excited modes increases with increasing excitation frequency: Thus, the incom-
ing energy into the non-excited eigenmodes increases with increasing excitation frequency.  Furthermore, we 
obtain the hierarchy of the acoustical modes for a cylinder without quarter wave cavities: The highest inten-
sity has the first tangential mode, followed by the second and the third tangential modes. Thus, higher order 
modes are emitting energy to lower order ones. The higher the eigenfrequency of the emitting mode, the 
higher will be the amount of the emitted energy. The lower the eigenfrequency of the receiving mode, the 
higher will be the received energy amount. 
 
4 – Hierarchy of acoustical modes in a cylinder coupled with a quarter wave cavity 
 
In the experiment presented in figure 10, the chamber was excited by the eigenfrequency of the coupled sys-
tem. The coupled frequency changes stepwise with the increasing resonator length as can be observed in 
figure 10. First step: For low resonator length the frequency decreases very slowly with increasing resonator 
length: The system frequency seems to cling to the calculated cylinder eigenfrequency. Second step: When 
the resonator length gets close to a value at which the eigenfrequency of the coupled system converges to the 
calculated λ/4-requency, the system eigenfrequency seems to cling to the calculated frequency of the λ/4-
tube. Third step: The coupled system eigenfrequency begins to converge to the value of a lower cylindrical 
mode. This phenomenon was first described by Searby et al. [2].  
  
If the resonator length is leading to a λ/2-tube-frequency which equals a cylinder frequency of the chamber, 
thus, if equations (1) and (3) are leading to the same value, the acoustical properties of the given eigenmode 
of the coupled cylinder-resonator-system are equal to the proper eigenmode properties of the cylinder with-
out resonator. In figure 10, the dotted line crosses the measured frequencies of the coupled system. Exem-
plary, f2T, L=0 = f1R, L=105 means that all acoustical properties of the 1R mode at L = 105 mm are identical to 
those of the 2T mode at L = 0. 
 
If the λ/4-tube-frequenc of the resonator is equal to the coupled frequency of the chamber-resonator-system, 
the experiment shows very low amplitude and high damping. In figure 10, the dash line crosses the measured 
frequencies. The damping, in these cases, is affected by the mode to mode conversion.  
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FIGURE 10 (upper plot): Coupled frequency of the chamber-resonator-system 

FIGURE 11 (lower plot):  Acoustical properties of the coupled system, fexcitation  =  f2T
Chamber No. 1, trumpet shaped resonator, resonator diameter D = 12.3 mm 

 
At 72 mm resonator length, the following events can be observed from figures 10 and 11: The 2T mode 
resonance frequency of the coupled system equals the λ/4-frequency of the resonator (figure 10).  The  
FWHM of the 2T mode has a maximum (solid triangle, fig. 11). The pedestal intensity (see figure 3) be-
comes a minimum (empty triangle, figure 11). Caused by the very low pedestal intensity, the measured 
FWHM-width of the 2T mode might be overestimated. In the resonator length range of roughly 60 to 80 mm 
a half-maximum-width of about 50 Hz seems to be more realistic. The intensity of the 1T frequency has a 
maximum at +20 dB (empty circle, figure 11): This means that the spectral energy density of the non-excited 
1Tσ mode is about 100 times higher than that of the excited 2T. The intensity of the 1R frequency has a 
maximum at +13 dB (empty square, figure 11): Thus, the intensity of the non-excited 1R mode is about 20 
times higher than that of the excited 2T. 
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FIGURE 12:   Mode conversion map; chamber No. 1, trumpet shaped resonator, D = 12.3 mm 
 
Figure 12 presents the areas at which the coupled resonator prevents pressure oscillation for the 1T and  
2T modes via mode conversion. The arrows show the direction of energy movement. The thickness of the 
arrows indicates the energy flux. 
  
 
5 – Increasing the acoustical damping of a chamber coupled with a quarter wave cavity 
 
Several experiments have been carried out to understand the influence of the cavity shape on the acoustical 
damping. The goal is to find geometry constellations with high acoustical damping to prevent high frequency 
combustion oscillation. Figure 13 shows results of measured FWHM distribution for the first and second 
tangential mode of a sharp edged and a trumpet shaped resonator as shown in figure 1. 
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FIGURE 13:   Measured FWHM values for the 1T (left) and 2T (right) modes; Chamber No. 1; Trumpet 
shaped (empty symbols) and sharp edged resonators (solid symbols), D = 12.3 mm 

 
Surprisingly, the experiments with trumpet-shaped quarter wave tube are leading to higher acoustical damp-
ing in comparison to sharp edged ones. This experimental finding is in contrast to the expectation that veloc-
ity fluctuation at the inlet of the resonator is a key process for acoustical damping. 
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resonator for non-dimensional resonator length of L / R = 0.85, fexcitation  =  f1T

Chamber No. 1, Sharp edged resonator, D = 10 mm. 
 
A tunable resonator has always an infinitesimal gap between the tube and the closing piston (see figure 14). 
However, even a very small gap at the closed end of a quarter wave resonator produces a strong increase of 
the acoustical damping, as can be seen in figure 14. At ordinate = abscissa = 0 the FWHM of the chamber 
without resonator equals 18 Hz. For the resonator length of L = 85 mm and the relative gap size of 0.2 %, the 
FWHM amounts to 21.5 Hz, thus the increase equals 21.5 – 18 = 3.5 Hz. While increasing the relative gap 
size, the increase of the FWHM grows steadily. A relative gap size of about 1.5 % leads to a doubling of the 
FWHM-increase compared to a hermetically closed end of the resonator. A relative gap size of about 4 % 
leads to an increase of the damping gain by a factor of 10. Possible implementations of this effect to oppress 
combustion oscillation of rocket engines are described in a patent application [3]  
 
 
6 – Optimizing the resonator length for one coupled quarter wave cavity 
 
The common way to determine the optimal resonator length is the evaluation of the so-called transfer-
function. An important experimental finding in this study is the observation that for the resonator length 
leading to the highest obliteration of a given cylindrical eigenmode, the eigenmodes of the coupled system 
closest to the unwanted cylindrical resonance show a strong symmetry according amplitude, damping and 
intensity. Figure 15 shows examples for some particularities of the acoustical properties when the resonator 
length is optimized to suppress the first tangential eigenmode of the combustion chamber. The optimized 
length of L = 85 mm is marked by a dash-line. In figure 10, the same length is marked, too. In figure 10, this 
is the length when the hyperbola of the lambda-quarter-tube frequency crosses the 1T cylindrical frequency 
of 1003 Hz. At this frequency, the right hand sides of the equations (2) and (3) are equal, thus equation (6) is 
true.  
 

r
c

L
cl mn

⋅⋅

⋅
=

⋅
⋅−⋅

π
α
24

)12( ,            (6) 

 
For l = m = n = 1 and r = 0.1m, thus for chamber No. 1, equation (6) is true at L = 85.3mm. For about the 
same resonator length, namely at L = 84 mm, the FWHM for the excitation of both the 1T and the 2T eigen-
modes is the same (FWHM1T =FWHM 2T = 36 Hz). And for about the same length, at L = 85 mm, the micro-
phone voltage of the excitation of above eigenmodes is the same, too (U1T =U 2T). Further, at this resonator 
length, the pedestal intensity of both signals is the same, too.  
 
When the hyperbola of the lambda-half-tube frequency crosses the 1T cylindrical frequency in figures 10 and 
12, the right hand sides of the equations (1) and (3) equal, thus equation (7) is true. 
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For chamber No. 1 this is the case at the length of about 170 mm. At this resonator length, the 1T eigenfre-
quency is roughly f1T ≈ 500 Hz, thus 2·f1T ≈ f2T. For about this length, namely in the length range of 160 < L 
< 170 mm, the 1T-FWHM-width for sharp-edged resonator has a minimum. For trumpet shaped resonator, 
however, the 3-dB-width increases steadily with the resonator length in the same length range, as can be 
observed in figure 13, left. The disagreement between the FWHM development for trumpet shaped and sharp 
edged resonators cannot be explained and needs further examination, in order to provide resonator design 
with optimized damping capacity. 
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Equation (6) permits a quick determination of the optimized resonator length for one quarter wave cavity 
coupled to a cylindrical resonator. Since the length of the quarter wave tube us not identical to the so called 
effective tube length, a fine tuning of the resonator is required to achieve best damping. The equality of the 
acoustical properties of the 1T and 2T modes at the optimized length, as shown in figure 15, leads to symme-
try of the frequency distribution of above modes, too. Taking this symmetry has enabled the development of 
a quick and very effective measuring procedure leading to a patent application [4]. 
 
 
7 – Conclusion and outlook  
 
In order to highlight the acoustical behavior of the more important tangential modes of combustion instabili-
ties, the presented experiments were carried out on cylindrical chambers with low axial length. For studying 
nonlinearity of acoustical excitation, cylindrical chambers without resonator and coupled with one resonator 
were tested. The experiments certify that for cylindrical chambers without resonator, energy from eigen-
modes with high eigenfrequencies emerge into modes in the lower frequency range. For coupled cylinder-
resonator systems, the energy of excitation emerges from eigenfrequencies close to satisfy equation (6) into 
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eigenfrequencies close to satisfy equation (7). The experiments exposed symmetries according the acoustical 
properties of the 1T and 2T modes for λ/4-tubes having optimized resonator length. The detection of the 
symmetry led to a procedure for optimizing the resonator length described in a patent application [4]. The 
investigation of the effect of an infinitesimal gap at the closed end of a resonator led to another patent appli-
cation for the increase of acoustical damping of combustion chambers [3].  
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FIGURE 16: Influence of a cavity ring on the eigenfrequency; Chamber No. 2, 
42 Resonators; Left: experiment; Right: calculation using FlexPDE®

 
 
Presently, the focus of investigation regards the effect of a cavity ring on the acoustical properties. The ex-
periments are accompanied by calculations using FlexPDE® common software, a finite element method for 
the solution of partial differential equations. A comparison of calculation and experiment for a cavity ring of 
a steam generator is presented in figure 16. The steam generator to be examined has a geometry 
configuration close to rocket engines. For experiment and calculation plotted in figure 16, the axial length is 
44 mm. The ongoing examination includes, however, the axial length of the combustion chamber with a 
cavity ring containing 42 quarter wave resonators. The goal of the investigation of the cavity ring as damping 
equipment is to proof if and how much the optimized shape and length of one quarter wave tube coupled to a 
cylindrical resonator are identical to those of a cavity ring. 
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